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Abstract The dynamics of the composition of chemical species in reacting systems
can be characterized by a set of autonomous differential equations derived from mass
conservation principles and some elementary hypothesis related to chemical reactivity.
These sets of ordinary differential equations (ODEs) are basically non-linear, their
complexity grows as much increases the number of substances present in the reacting
media and can be characterized by a set of phenomenological constants (kinetic rate
constants) which contains all the relevant information about the physical system. The
determination of these kinetic constants is critical for the design or control of chemical
systems from a technological point of view but the non-linear nature of the ODEs
implies that there are hidden correlations between the parameters which maybe can
be revealed with a identifiability analysis.

Keywords Continuous system · Structural properties · Identifiability · Observability

1 Introduction

The application of a chemical system in a technological domain implies the determi-
nation of the kinetic rate constants defined in the chemical reaction mechanism. A
correct experimental design can save hours of laboratory work in the determination
of these constants, and thus, the availability of mathematical analysis tools which
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allow the experimental design can be useful for the chemist community. In this way,
the identifiability of the system plays an important role. This problem consists of the
determination of all parameter sets which give the same input-output structure.

In Chemistry, the dynamics of the composition of chemical species in reacting sys-
tems can be characterized by a set of autonomous differential equations derived from
mass conservation principles and some elementary hypothesis related to chemical
reactivity. These sets of ordinary differential equations (ODEs) are basically non-
linear, their complexity grows as much increases the number of substances present in
the reacting media and can be characterized by a set of phenomenological constants
(kinetic rate constants) which contains all the relevant information about the physical
system. The determination of these kinetic constants is critical for the design or control
of chemical systems from a technological point of view but the non-linear nature of
the ODEs implies that there are hidden correlations between the parameters which
maybe can be revealed with a structural identifiability analysis. The chemical irre-
versible reactions can be expressed as a particular class of the more general chemical
reversible reactions. Although the former are more common in chemical systems, the
reversible ones have the advantage that can be approached, under some experimental
circumstances, to linear systems. Then in this work we propose to analyze a reversible
chemical reacting network, assuming that initially it remains stationary in an equilib-
rium state. Then, we will imagine an experiment where this system is perturbed and
that it will return to its same initial state.

The dynamics of chemical reaction are usually described by set of non linear first
order differential equations. All the relevant information of the chemical mechanism
is given by the stoichiometric matrix which contains the stoichiometric coefficients
of all the chemical substances of all the elementary chemical reactions, allowing to
deduce the production rate, R j , for each species [13,14]. These differential equations
are in the form of

R j = dz j

dt
=

∑

i

vi j ki

∏

j

z
|vi j |
j (1)

where vi j are the stoichiometric coefficients, ki the kinetic rate constant of the i-th
chemical reaction and z j the concentration of the j-th chemical substance.

The identifiability property of this model is studied in order to confirm the possible
identifiable parameters of the model from a given set of experimental data. A proce-
dure for the identification is proposed. This analysis identifies the parameters or the
relationships between parameters which are accessible experimentally from an input-
output pair. This analysis allows design experiments knowing a priori the relationships
between the parameters. Given an experiment, it is possible to know the maximum
achievable information of a model and it provides information to design optimization
algorithms to obtain and to analyze the relative sensitivity of the parameters.

One of the purpose of this work is the structural identifiability analysis of
autonomous systems such as Eq. (1) for chemical reactions. The aim is the use of
this technique for an optimal experimental design. It is common in real chemical sys-
tems that for a given chemical reaction mechanism there are substances which cannot
be measured, detected or simply are hypothetically predicted. If our objective is the
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accurate determination of all the kinetic rate constants, ki , the unknown concentrations
of (1) makes the system undefined in the sense that not all the state variables of the
system are known. Then, our challenge is to derive the maximum information of the
system from a partial knowledge of the state variables of the system.

In this work we consider a particular class of chemical reactions which can be
linearized around an equilibrium point. Let us consider a global reversible chemical
reaction which can be described by a reaction mechanism composed of i elementary
reversible reactions. Starting from an initial condition physically feasible, the system
will attain a thermodynamic equilibrium point where the concentrations of all species
are related with the equilibrium constants. If at this point the system is slightly per-
turbed, the equilibrium concentrations will change to another point and it will relax
again to the original equilibrium point. Let consider that the chemical system can be
described by

ż = f (z, k) z(0) = z0 (2)

where f (·) is a non-linear function of the concentrations z’s. The equilibrium point is
attained when the chemical potential of the system reach its minimum. At this point
the composition is constant and thus

0 = f (ze, k). (3)

Considering the first order series expansion of Eq. (2), the system can be approached
to

ż ≈ f (ze, k) +
∑

j

(
∂ f

∂z

)

ze

(z j − z je).

Defining the deviation variable x j = z j − z je and using the property (3), the system
(2) is reduced to the linear system

ẋ = Ax

where A is the system matrix which depends on the kinetic rate constants and the
equilibrium concentrations. The structural identifiability analysis will be applied to
this linear system.

Under this framework, two chemical systems are analyzed in this paper. A first
simple academic model where the methodology is shown and tested under different
circumstances. The second example under analysis is based on the oxidation of bro-
mide by ozone, a system with evident technological interest in drinking water treatment
plants.

The organization of the paper is as follows. In Sect. 2, we introduce some definitions
and state some preliminary results needed in later sections. In Sect. 3, we analyze a
reversible chemical reacting network, assuming that initially it remains stationary in an
equilibrium state. In Sect. 4, we apply the results of Sect. 3 to study an experimental
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chemical model and we give a discussion about the accuracy of results. Finally, in
Sect. 5, some conclusions are given.

2 Preliminaries

Linear systems will play a key role in obtaining the results on identifiability, because
we use chemical reactions whose mathematical model can be approximated to linear
systems.

When we consider the impulse on one reactive the linear system is described by

ẋ = A(p)x + Bu (4)

where B = ei being ei the canonical vector.
In this case, it is important to identify the parameters of matrix A(p). Several authors

have studied the identifiability problem using different techniques and some results on
structural identifiability are given. In particular, if we consider the Markov parameters
of system (4), Vj (p) = A j (p)B, j ≥ 0, we can prove that the system is identifiable,
that is all the parameters of the model can be known using experimental data (see [7])
and a characterization of structural identifiability of system (4) is given in [2].

Therefore, usually the parameters of the model are unknown and cannot be pre-
specified, and need to be estimated from data collected experimentally by measuring
the observable variables. In this step, first we must know the number of variables that
we can hope to measure. The number of directly observable variables may influence in
the identifiability of the system and even sometimes can miss the identifiability. Then
it is important to obtain the minimum number of variables that must be measured to
identify the chemical process. Now, this process can be described by this continuous
linear control system

ẋ = A(p)x + Bu

y = Cx.

In the above system the information on the observable or measured variables is obtained
from the algebraic equations, that is, it is given by the structure of the matrix C .
Then, the dynamic chemical system can be represented as a relationship between the
observable o measurable output, y, and the perturbation, u. That is, we have an input-
output model. The problem of the structural identifiability of the model consists of
the determination of all parameter sets which give the same input-output structure. In
this case, the Markov parameters that allows the study of the identifiability where we
consider the measurable variables are defined by Vj (p) = C A j (p)B, j ≥ 0.

The identification problem associated to variables that can be measured is related to
determining the minimum number of rows of the matrix C to assure the identifiability
of all parameters of the system.

There exist several techniques to obtain the identifiability of the parameters. These
techniques are useful depending on the model to analyze. In this study, the used
technique is based in the study of Markov parameters of the system.
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Fig. 1 Chemical reversible
reacting system

3 Model AKL

In this section, we propose to analyze a reversible chemical reacting network, assuming
that initially it remains stationary in an equilibrium state. Let us consider this system
given in Fig. 1.

In this figure the direct and the reverse kinetic rate constants, ki and pi respectively,
are indicated on each reaction. This example of reacting system has been set because
includes several situations that can be encountered in typical chemical reaction mech-
anisms such as consecutive, competitive, first and second order chemical reactions.
We expect that the identifiability analysis of such system will give some relevant infor-
mation in more complex chemical systems about how the kinetic rate constants are
related or the mathematical procedures that we will expect to need.

The dynamic model describing the internal structure of the reactions given in
Fig. 1 is formulated theoretically using nonlinear state-space mathematical equations,
depending on unknown parameters. That is,

ż A = −k1z A + p1zK − k2z AzK + p2zL

żK = k1z A − p1zK − k2z AzK + p2zL

żL = k2z AzK − (p2 + k3 + k4)zL + p3zP + p4zQ

żP = k3zL − p3zP

żQ = k4zL − p4zQ (5)

where z A, zK , zL , zP and zQ are the concentrations of the reactive A, K , L , P and
Q at time t , respectively.
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The equilibrium point of the chemical reactions of this system is reached at the
concentrations

z1e = −(1 + K1) + √
(1 + K1)2 + 8K1 K2(1 + K3 + K4)z10

4K1 K2(1 + K3 + K4)

z2e = K1z1e

z3e = K1 K2z2
1e

z4e = K1 K2 K3z2
1e

z5e = K1 K2 K3z2
1e (6)

where z10 is the initial concentration of species 1 and the equilibrium constants are
related to the kinetic rate constants through

Ki = ki

pi
, i = 1, . . . , 4.

This system can be linearized around the equilibrium point of the system ze =
(z1e z2e z3e z4e z5e)

T , obtaining the following continuous linear system ẋ = A(p)x
where the matrix A(p) with p = (k1 k2 k3 k4 p1 p2 p3 p4) is

A(p) =

⎛

⎜⎜⎜⎜⎝

−(k1 + k2z2e) p1 − k2z1e p2 0 0
k1 − k2z2e −(p1 + k2z1e) p2 0 0
k2z2e k2z1e −(p2 + k3 + k4) p3 p4
0 0 k3 −p3 0
0 0 k4 0 p4

⎞

⎟⎟⎟⎟⎠
. (7)

In particular, the above equations can model a reversible chemical reacting network
in a batch reactor, see [6]. The equilibrium point can be perturbed by the injection,
in impulse, of a given concentration of either component A, K , L , P and Q. This
injection is commonly employed as additional input variables. Moreover, the number
of directly observable variables has influence in the identifiability of the parameters.
Thus, it is necessary to know the measurable variables. In this case we consider the
system

ẋ = A(p)x + Bu

y = Cx. (8)

where A(p) is given by (7) and B = ei , ei is the canonical vector, i = 1, . . . , n and C
is the matrix associated to the measurable variables. We are studying different cases
according to several matrices C and the results are given in the following theorem.

Theorem 1 Consider the system (8). If

(a) B is equal to e1, e2 or e3 and C = (e2 e3 e4 e5)
T or

(b) B is equal to e5 and C = (e1 e2 e3 e4)
T ,
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then the system (8) is identifiable. Moreover, if

(c) B = e4 and C = (e3 e4 e5)
T then the parameters {k2, k3, k4, p2, p3, p4} are

identifiable.

Proof We consider two structured systems of type (8) with the vector parameters p
and p̄, such that they have the same input-output behavior. It is known [2] that a system
is identifiable if and only if, io(p) = io(p̄) implies that p = p̄, where io(·) denotes
the input-output behavior of the system. That is, the system is identifiable if

Vj (p) = Vj (p̄), j ≥ 0 �⇒ p = p̄.

Firstly, in each case we calculate the Markov parameters of the system (8), Vj (p), j =
0 . . . , 4, since the size of the matrix A(p) is n = 5.

(a) We consider B = ei with i = 1, 2, 3 and C = (e2 e3 e4 e5)
T . We check that it is

only necessary consider the equations Vj (p) = Vj (p̄), j = 0, 1, 2, 3 to assure
the identifiability of the system.

(b) Now we consider C = (e1 e2 e3 e4)
T . If B = e5 we prove that the system is

identifiable from the equations corresponding to j = 0, 1, 2, 3.
(c) Finally, if B = e4 and C = (e3 e4 e5)

T , using the Markov parameters corre-
sponding to j = 0, 1, 2, 3, we identify the parameters {k2, k3, k4, p2, p3, p4}.
Moreover we obtain a relationship between the parameters k1 and p1. ��

Note that if we perturb some components at the same time, the result is a linear
combination of the results showed in the table, for each perturbed component individ-
ually. And an increase in the number of observable variables from those described in
the table, does not improve the identifiability of the system.

Corollary 1 Consider the system (8). Then

1. If the concentration of the reactive A K or L is perturbed then to identify the
system it is sufficient observe the reactives K , L , P and Q.

2. If the concentration of the reactive Q is perturbed then to identify the system it is
sufficient observe the reactives A, K , L and P.

3. If the concentration of the reactive P is perturbed then to identify the maximum
number of parameters it is sufficient observe L , P and Q. In this case the identifi-
able parameters are {k2, k3, k4, p2, p3, p4} and we obtain a relationship between
k1 and p1.

The Table 1 shows the kinetic rate constants that can be identified from the Markov
structural identifiability analysis, depending on the chemical species perturbed and
the observable variables.

These results come from the application of the identifiability methodology after the
linearization of the original nonlinear model. Consequently, it is pertinent to ask if the
obtained results are useful from a practical point of view or if the results derived from
the linear model are coherent with the structure of the nonlinear model.

The approach explored in this article was to fit the nonlinear model to the simulated
data after the perturbation of some chemical species, and analyzing which kinetic rate
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Table 1 Theoretical and simulation results

Perturbed variables Observed variables Technique or Method Identified parameters
k1 k2 k3 k4 p1 p2 p3 p4

A A, K , L , P, Q Identifiability × × × × × × × ×
A A, K , L , P, Q Simulation × ×
A K , L , P, Q Identifiability × × × × × × × ×
A K , L , P, Q Simulation

A L , P, Q Identifiability × × × × × ×
A L , P, Q Simulation × × × ×
K or L A, K , L , P, Q Identifiability × × × × × × × ×
K or L A, K , L , P, Q Simulation × × × × × × × ×
K or L K , L , P, Q Identifiability × × × × × × × ×
K or L K , L , P, Q Simulation × × × × × × × ×
K or L L , P, Q Identifiability × × × × × ×
K or L L , P, Q Simulation × × × ×
P A, K , L , P, Q Identifiability × × × × × ×
P A, K , L , P, Q Simulation × × × × × ×
P K , L , P, Q Identifiability × × × × × ×
P K , L , P, Q Simulation × × × × × ×
P L , P, Q Identifiability × × × × × ×
P L , P, Q Simulation × × × ×
Q A, K , L , P, Q Identifiability × × × × × × × ×
Q A, K , L , P, Q Simulation × × × ×
Q K , L , P, Q Identifiability × × × × × ×
Q K , L , P, Q Simulation × ×
Q L , P, Q Identifiability × × × × × ×
Q L , P, Q Simulation × ×

constants are fitted, from a practical point of view, depending on the chosen observable
variables. This last approach presents some restrictions that have to be taken into
account and that limits the application of the conclusions beyond the system AKL.
First, the results will be obtained in some local region of the space of parameters while
any structural identifiability analysis is global. And second, the practical identifiability
is affected by the sensitivity of the parameters in the model, which means that the
number of parameters that are successfully fitted can be lower than those structurally
identified. In any case, our purpose is to show if it is possible to fit more parameters
of the nonlinear model than those identified from the approximated linear one.

The applied procedure can be described with the following steps:

1. Some values are assigned to the kinetic rate constants ki and pi and to the initial
concentration z10
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k1 =4s−1; k : 2=3M−1s−1; k3 =2s−1; k4 =1s−1; p1 =0.8s−1; p2 =0.6s−1

p3 = 0.4s−1; p4 = 0.2s−1; z10 = 1M

2. The equilibrium concentrations zie are calculated from Eq. (6).
3. The initial conditions of the nonlinear ODE system (5) are fixed according to the

chemical species perturbed in the following way

zi0 = zie + M zie

where M is a diagonal matrix which diagonal terms are the percentage of increase
in the equilibrium concentration of each chemical specie perturbed.In this case a
10 % has been applied.

4. The nonlinear ODE system (5) is solved using Matlab 2010b and fixing a simu-
lation time enough long for assuring that a new steady state is achieved (25 s in
this case).

5. Depending on the observable variables considered, only the above simulated con-
centrations corresponding to those observable variables are taken into account in
the following optimization step.

6. The Levenberg-Marquardt optimization algorithm [8] has been used for fitting the
nonlinear model (5) to the simulated concentrations of the observable chemical
species. The success of the convergence of the least-squares minimization algo-
rithm depends, among other factors, on the value of the initial parameters used in
the iteration algorithm [9]. In this case, the initial parameters used are the 10 %
of the original ones defined in the step 1.

7. The fitted parameters are compared with those used in the simulation and only
the fitted ones that differ less than a 5 % from the simulated ones are considered
as identified from a practical point of view.

The results can be seen in the Table 1, in comparison with the results obtained
from the Markov structural identifiability analysis applied to the linearized model. In
any analyzed case non identified parameters have been fitted, indicating that some of
the information deduced from the linearized model can be translated to the nonlinear
one. Conversely, some identified parameters have not been fitted, as could be expected
taking into account the sensitivity of the parameters.

4 Model Bromide/Bromate

The second system under study is the chemical formation of bromate by an ozonation
process in a drinking water treatment plant [3,4]. The ozonation is used in drinking
water production as a disinfection step which can be complicated by the presence of
bromide, Br−, reacting with the ozone, O3, potentially leading to the formation of
bromates, Br O−

3 , [10]. This substance is classified as possible carcinogenic and its
production must be controlled below the 10 μg/L for drinking water following the
recomendations of the WHO, EU and USEPA [16].

Our objective at this point is to analyze the real chemical mechanism under the per-
spective of the structural identifiability analysis to derive the information attainable
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Fig. 2 Bromide/bromate initial
reaction mechanism

Fig. 3 Chemical reversible
reacting system

from the model assuming the experimental restrictions. The chemical reaction mech-
anism of bromate formation is very complex and includes almost twenty elementary
chemical reactions [10,11,15,12]. Here we will consider just the initial steps of the
reaction between the ozone and the bromide. According [12] the reaction between the
Br− and the O3 in acid media can be approached to

For simplicity let us rewrite the chemical mechanism as
The equilibrium concentrations of this chemical system are given by the solution

of the following system of algebraic equations derived from the mass action law

K1z1ez2e − z3e = 0

K3z3e − z4ez5e = 0

K5z4ez2e − z6e = 0

K7z6ez2e − z7e = 0

−2z10 + z20 = −2z1e + z2e − z3e − z4e + z7e

3z10 − z20 = 3z1e − z2e + 2z3e + 2z4e + z6e

z10 = z1e + z3e + z5e

where z10 and z20 are the initial concentrations for the ozone and the bromide, respec-
tively.

At this point a discussion about the physically known state variables and equilibrium
constants must be done to define the structural identifiability problem. Not all the
chemical species of the mechanism in the Fig. 2 can be measured or can be followed
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its deviation from the equilibrium point. Recall that the experiment modelled here
considers that in a first stage the system evolves from the initial state to an equilibrium
point. Then, the system is perturbed in a way that the concentrations of the chemical
species change and the relaxation to the precedent equilibrium point is followed to
derive the kinetic information of the system. The chemical species like Br− or H O Br
cannot be followed easily in real time, but others like O3, Br2 or Br−

3 can be followed
with an spectrophometer [1,5]. Consequently, in an hypothetical experiment design
only the state variables x1, x6 or x7 or combinations of two of these state variables
are accessible and the structural identifiability analysis is restricted to this knowledge.
Additionally, neither all the equilibrium concentrations will be known again because
the instrumental limitations for chemical species detection. For the system under study,
the equilibrium concentration of the O3, the O2 and the Br2 or the Br−

3 can be easily
measured , i. e., z1e, z5e and z6e or z7e.

The dynamic model describing the internal structure of the reactions given in
Fig. 3 is formulated theoretically using nonlinear state-space mathematical equations,
depending on unknown parameters. That is,

ż1 = −k1z1z2 + k2z3

ż2 = −k1z1z2 + k2z3 − k5z2z4 + k6z6 − k7z2z6 + k8z7

ż3 = k1z1z2 − k2z3 − k3z3 + k4z4z5

ż4 = k3z3 − k4z4z5 − k5z2z4 + k6z6

ż5 = k3z3 − k4z4z5

ż6 = k5z2z4 − k6z6 − k7z2z6 + k8z7

ż7 = k7z2z6 − k8z7

where zi are the concentrations of the components, that is z1 = [A], z2 = [B], z3 =
[I ], z4 = [P], z5 = [Q], z6 = [R] and z7 = [S] at time t and ki are the reaction
constants.

This system can be linearized around the equilibrium point of the system ze =
(Ae Be Ie Pe Qe Re Se)

T , where only are unknown Be and Pe. We obtain the following
continuous linear system

ẋ = A(p)x + Bu

y = Cx (9)

where the matrix A(p) is given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α −K1 k2 0 0 0 0
α −K1 − φ − K7 k2 −ϕ 0 k6 − γ k8
α K1 −k2 − k3 K4 β 0 0
0 −φ k3 −ϕ − K4 −β k6 0
0 0 k3 −K4 β 0 0
0 φ − K7 0 ϕ 0 −k6 − γ k8
0 K7 0 0 0 γ −k8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)
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where K1 = k1z1e, K4 = k4z5e, K7 = k7z6e, α = k1z2e, β = k4z4e, ϕ =
k5z2e, φ = k5z4e, γ = k7z2e and the entries of vector parameter p are the reac-
tion constants ki , i = 1, . . . , 8, Be and Pe. And the state variables x represent the
variable deviation of the concentration with respect to an equilibrium point.

In this case the perturbation variables are x1 or x2 and the observable variables can
be x1, x6, x7, x1 and x6 or x1 and x7. Moreover the equilibrium concentrations that
we know are z1e, z6e and z5e.

It is easy to check that we can identify more number of variables if we observe x1
and x7. In this case, we give the next result.

Theorem 2 Consider the system (9). If B = (e1 e2) and C = (e1 e7)
T then the para-

meters {k1, k2, k3, k4, k7, k8, z2e, k5z4e} are identifiable and a relationship between
k6,k7, k5z4e and k5z2e.

Corollary 2 Consider the system (9). If firstly the deviation variable of the concen-
tration A in the equilibrium point is perturbed and later the deviation variable of the
concentration B in the equilibrium point is perturbed then to identify the maximum
number of parameters it is sufficient observe the deviation variables of the concen-
trations A, and S in the equilibrium point. In this case the identifiable parameters
are {k1, k2, k3, k4, k7, k8}, the concentration of the component B in the equilibrium
point and the product between k5 and the concentration of the component P in the
equilibrium point. Moreover we obtain this relation k6k7 −k6(k5z4e)−(k5z4e)(k5z2e).

5 Conclusions

In this paper we study two chemical systems, one of them is a reversible chemical
reacting network, model AKL, and the another one represents the chemical formation
of bromate by an ozonation process in a drinking water treatment plant. For that, we
model and linearize the processes and we study their identifiability properties. In the
AKL model we simulate the process in order to check if the results obtained on the
identifiability matchs up with the simulation results.

In AKL model we obtain that it is not necessary to observe all the components
to identify the parameters. Only if we perturb the component P we do not assure
the identifiability of all parameters, but we can identify relationship between them.
The simulations and parameter fitting procedure, in this case, has shown that no non
identified parameter has been fitted which means that some information from the
linearized model can be extrapolated to the nonlinear one.

In Bromide/Bromate model we only can perturb the variables x1 or x2 and the
observable variables can be x1, x6, x7, x1 and x6 or x1 and x7. The best result is given
when we perturbed firstly x1 and after x2 and we observe x1 and x7. In this case we do
not assure the identifiability of all parameters, but we can identify most of them and
we give a relationship between the rest of them.
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